CTI Transfer Panel
 Technical Instruction Manual

GENERAL SAFETY INSTRUCTIONS

- This leaflet provides CTI Automatic Transfer Switch range, safety, connection and operating instructions.
- This system must always be installed and commissioned by specialised and qualified persons.
- Check earth cable connected before powering the unit
- Keep the cabinet clean using a dry cloth.
- It is recommended that this leaflet be kept in a place easily accessible to all of those who may need it.
- The maintenance operations must be carried out exclusively by authorised and appropriately trained personnel.
- This system complies with the community directives applicable to this product. Thus, it bears the CE mark.
- Compliance with IEC 60947-6-1.
- Information provided in this instruction manual is subject to change and not contractual.

General introduction

The CTI enclosure integrates a 4-pole fast changeover switch including electronic control to meet the IEC 60947-6-1 standard. Thanks to the changeover switch technology, it is always possible to manually operate the system in order to guarantee the changeover panel operation under all circumstances.
This new development allows advantages brought using switch technology but keeps contactor control possible on request via programming (Refer to RETURN 0 Function).

CTI transfer panel range

CTI range is available from 63 A to 160 A in two different voltage configurations :

400 Vac P-P*	230 Vac P-P*
CTI 63 A	CTI_1 63 A
CTI 100 A	CTI_1 100A
CTI 125 A	CTI_1125A
CTI 160 A	CTI_1160A

New changeover panel

The fast changeover solution contains four main integrated elements:

(1) 2 switches mechanically interlocked including electronic control and accessories.
(2) A fast electrical operation unit allowing electrical and manual operation of the system.
(3) A dedicated enclosure
(4) Bridging bar

The electronic module includes:

- Source supply monitoring
- Metering display (voltage and frequency as standard)
- Test operations and Sequences programming using keypad.
Manual \& padlocking operations, as well as electronic module programming and use are directly accessible from the front panel.

Refer to Network configurations chapter to select correct model and configuration
Bottom cable entry is provided as standard.
*: Phase to phase

! Two types of products for two voltage configurations CTI : for $230 \mathrm{vac} / 400 \mathrm{vac}$ CTI_1: for 127 vac/230 vac

> Features and benefits:

1-SWITCH :

A fully integrated \& interlocked transfer system with high electrical characteristics and a fully programmable microprocessor control module \& display.

2-OPERATION :

A flexible operating mechanism enables fast automatic or local/emergency manual operation with padlocking facility.

3 - ENCLOSURE :

A steel enclosure designed specifically to allow an easy fixing and wiring of the changeover and its accessories (IP54, Lightning protection...), as well as an ergonomic use thanks to a flush mounting allowing a direct access to the means of visualization, configuration and control (Auto \& Manu).

Voltage options

CTI power supply can carry from 220-20\% Vac to $277+10 \%$ Vac under frequency 50 Hz or 60 Hz .

Two CTI versions have been developed to meet all of voltage configurations required.

Accessories

> The following accessories are available as customer fitted options

- Auxiliary contacts module for switch position information (Main, Gen, zero position). One module includes the 3 positions information. 1 module maximum is the standard CTI enclosure. Option code is TAUX.

- Solid neutral link is available as an accessory, when switching of the neutral cable is not desired. Option code is TLNK.

- Voltage Sensing tap accessory allows for each pole voltage sensing or supply (on two $1.5 \mathrm{~mm}^{2}$ terminals) directly taken from power terminals via a dedicated plug.

- Lightning protection. It is available as an accessory to avoid ATS damage in case of a strike on the power cables. This option is highly recommended in stormy areas.
- IP 54. An IP54 accessory kit is available to protect the product against dust and water infiltrations. The kit includes: 1 windows to fix on the door cut-out and 1 protection screen kit to avoid direct contacts during manual operation when the

- Terminal extensions. This accessory allow to convert the CTI plugs to terminal bars. 1 kit includes 3 terminal extensions pieces with their phase screen protection.

Environment

> The complete enclosure meets following environmental requirements:

- Ingress protection:
- standard Enclosed product = IP4x (possible IP54 with option)
- Loose product = IP21
- Operating conditions:
- Temperature :

Of $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ without de-rating
Of $+40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ without de-rating

- Humidity: 95% non condensing at $+40^{\circ} \mathrm{C}$
- Storage conditions :
- Duration : 1 year maximum
- Temperature: $<+55^{\circ} \mathrm{C}$
- Humidity: 80% non condensing at $55^{\circ} \mathrm{C}$
- Maximum operating altitude without switch derating is 2000 m above sea level.

	63A	100A	125A	160A
Frequencies	$50 \mathrm{~Hz} \& 60 \mathrm{~Hz}$	50 Hz \& 60 Hz	50 Hz \& 60 Hz	50 Hz \& 60 Hz
Thermal current lthe $40{ }^{\circ} \mathrm{C}$ (A)	63	100	125	160
Thermal current lthe $50^{\circ} \mathrm{C}$ (A)	63	100	110	125
Thermal current lthe $60^{\circ} \mathrm{C}$ (A)	50	80	100	100
Assigned insulation voltage Ui (V) (power circuit):	600	600	600	600
Assigned impulse voltage Uimp (kV) (power circuit):	6	6	6	6
Assigned insulation voltage Ui (V) (auxiliary circuit):	300	300	300	300
Assigned impulse voltage Uimp (kV) (auxiliary circuit):	2.5	2.5	2.5	2.5
Other characteristic at $40^{\circ} \mathrm{C}$:				
Rated operational currents le (A)				
IEC 60947-3 characteristics 415 Vac				
AC 21A / 21 B	63/63	100/100	125/125	160/160
AC 22A / 22 B	63/63	100/100	125/125	125/160
AC 23A / 23 B	63/63	100/100	125/125	125/160
IEC 60947-6-1 characteristics 415 Vac				
AC 31B	63	100	125	160
AC 32B	63	100	125	160
Operating class				
Material class (according to 60947-6-1)	PC	PC	PC	PC
Maximum short circuit current using gG DIN fuse:				
Max short circuit (kA eff)	50	50	50	50
Associated fuse size (gG)	63	100	125	160
Peak current value: withstand and closing operation (kA peak)	7.5	11	13.5	16.5
Short circuit operation:	5	5	5	5
Transfer time				
$\mathrm{I}-\mathrm{O} / \mathrm{O-I} / \mathrm{II}-\mathrm{O} / \mathrm{O-II}(\mathrm{~ms})$	50	50	50	50
$\mathrm{I}-\mathrm{II}$ or II-I (ms)	180	180	180	180
Blackout time during comutation under Un (ms)	120	120	120	120
Power input				
Peak current during operation (A)	20	20	20	20
Continuous power consumption (VA)	6	6	6	6
Mechanical characteristics				
Number of mechanical operations (according to 60947-6-3)	10000	10000	10000	10000
Cables connection				
Minimum cable size ($\mathrm{Cu} \mathrm{mm}^{2}$)	25	35	50	50
Maximum cable size ($\mathrm{Cumm} \mathrm{m}^{\text {) }}$	50	50	70	70

Single phase configuration :

Table available for single phase configuration using a 4 pole switch and connecting 2 poles in parallel (Max ambiant temperature $=40^{\circ} \mathrm{C}$)

Nominal rating 3 phase configuration (A)	Nominal rating 1 phase configuration (2 poles in $/$ (A) $)$
63	100
80	125
100	160
125	200
160	250

First operation
Wall mounting operation and dimensions
Accessories mounting
Power cables connection
Network configurations
Control terminals connections

First operation

- The system is delivered in position 0 and in auto mode with the generator start contact closed.

Wall mounting installation and dimensions

The enclosure must be fixed on a wall using solid fixing screws (not supplied).

Drilling template for the gland plate are provided in the appendix.

Accessories mounting

> Auxilary contacts

1 auxiliary contact normally open and normally closed for each position I, O, II. Use dedicated screws delivered with the accessory.

Recommended size : M6 50 mm (minimum).

A
For a correct use in hard environmental conditions, it is essential to use the cable gland plate, in order to protect the product.

Height (mm)	600
Width (mm)	400
Depth (mm)	200
Weight (kg)	From 20 to 25 including accessories

> Voltage sensing tap

Allows for each pole voltage sensing or supply (max $1,5 \mathrm{~mm}^{2}$ cable), power cables connection capacity remains available.

Allows neutral cables from Main, Gen and Load to be connected together. In case of 400 Vac applications, 2 neutral control cables are required to power supply the switch (230 Vac) from Main and Gen.

Accessories mounting

Power cables connection
Network configurations
Control terminals connections

Accessories mounting (cont.)

The lightning protection system is hardly recommended to ensure changeover safety.
This option is provided mounted on a din rail which can be fixed with the 2 screws available on the enclosure back plate (on the top or bottom).
The phases and neutral lines can be connected on the upstream side of the source which presents more risks.

Move the CTI support to reduce the height. Then position the window on the door cut-out.
Finally, position the protection screen, screwing it.

> Terminal extensions

These terminals can be connected in the CTI plugs, then they provide connections on terminals directly.
1 piece for the main side
1 piece for the genset side
1 piece for the load side.

	63 A	100 A	125 A	160 A
Minimum cable size $\left(\mathrm{mm}^{2}\right)$	25	35	50	50
Maximum cable size $\left(\mathrm{mm}^{2}\right)$	50	50	70	70

Network configurations
vOLTAGE CONFIGURATIONS

First operation
Wall mounting operation and dimensions
Accessories mounting
Power cables connection
Network configurations
Control terminals connections

Network configurations

VOLTAGE CONFIGURATIONS

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Network type \& \& FG Wilson option code \& Voltage \& Frequency \& Electrical drawing \& \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Phase to Phase voltage
\[
220->240 V
\] \\
1 phase 3 wires 1P3L
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& r_{1} \\
\& \overline{\mathrm{~F}}
\end{aligned}
\]} \& \(\begin{array}{r}\text { V522 } \\ \hline V 524 \\ \hline V 526 \\ \hline V 622 \\ \hline V 624 \\ \hline V 626\end{array}\) \& \(240 \mathrm{~V} / 120 \mathrm{~V}\) \& 60 Hz \& \& \[
\int_{\mathrm{L} 6}^{\mathrm{L} 4 / \mathrm{M}}
\] \\
\hline \& \& \multicolumn{5}{|c|}{Measurements: [Main: U12-U23-U31] / [Genset: U12-U23-U31]} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Phase to Neutral voltage
\[
200 \text {-> 277V }
\] \\
1 phase 2 wires 1P2L \\
Single phase network
\end{tabular}} \& \multirow[t]{2}{*}{\[
\overline{\mathrm{O}}
\]} \& \& 240 V
230 V
220 V
277 V
254 V
200 V \& 50 Hz \& \& \[
\bigwedge_{\mathrm{N} 1}^{\mathrm{L} 4}
\] \\
\hline \& \& \multicolumn{5}{|c|}{Measurements: [Main: V1] / [Genset: V1]} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Phase to Phase voltage
\[
220->240 V
\] \\
1 phase 2 wires 1P2L
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& r_{1} \\
\& \overline{\mathrm{~F}}
\end{aligned}
\]} \& \begin{tabular}{l}
V521 \\
V523 \\
V525 \\
V621 \\
V623 \\
V625
\end{tabular} \& 240 V \& 50 Hz

60 Hz \& \& $$
\underbrace{L_{6 / N 1}^{L 5}}_{4}
$$

\hline \& \& \multicolumn{5}{|c|}{Measurements: [Main: V1] / [Genset: V1]}

\hline
\end{tabular}

Network configurations

VOLTAGE CONFIGURATIONS				
Network type		Description	Electrical drawing	
2PAP	\bar{O}	2 phases network - single phase GEN		
		Measurements: [Main: V1-V2] / [Genset: V1]		
$3 P A P$	$\overline{\mathrm{E}}$	3 phases network - single phase GEN		$\stackrel{L}{4}_{\mathrm{N}}^{\mathrm{L}}$
		Measurements: [Main: V1-V2-V3] / [Genset: V1]		

Control terminals connections

Denomination	Terminals	Description	Characteristics	Recommended cable section
Input	207	Input common terminal Automatic control inhibit Remote test on load External manual retransfer function	dry contact	0,5 to 2,5mm²
	208	209		
210	$43 / 44$	Non automatic mode Mains available Generator available Generator start /stop signal	Resistive load: Max. switched power: 60 W or 250 VA Max. switched current: 5 a Max. switched voltage: 30 VDC or 250 VAC	0,5 to 2,5mm²

In manual mode, after a loss of the main voltage and the genset voltage, the start order can't be given.

General introduction

The product provides:

- Manual operation
- Automatic transfer operation
- Test operations and mimic
- Sources \& power availability mimic
- Voltage and frequency metering
- Fault information

It is possible to set up a return to zero position action after source failure (main or gen). 2nd TRIP variable must be activated to allow this feature.
The product requires at least one type of network configuration and a network nominal voltage configuration to be input via the keypad by the user.
Other default values can be stored or modified according to hereafter programming guidelines.

Electronic module introduction

Front panel introduction:
Leds indications are only active once the product is powered (power led activated).

Programming

Programming

> Software version

Software version is displayed on the unit after reset (powering up action after minimum 3 minutes power off to discharge the unit).

> Product programming

Product Programming is possible in automatic mode in position I when the mains source is available, or in manual mode.
It is not accessible when a test or an automatic sequence is activated.

PROGRAMMING ACCESS

Programming mode is accessible by pressing and holding the validation pushbutton for 3 seconds and then entering the code (default code = 1000):

PROGRAMMING EXIT

To exit the Programming and come back to visualisation mode, hold the validation pushbutton for 3 seconds.

Parameters saved permanently after exit.

PRODUCT RESET

- Software reset -> open and reclose the front cover

Programming

PROGRAMMING MENUS

> Architecture and navigation

The programming mode integrates 4 Menus:
Setup: Network parameters

Volt levels: Voltage detection levels
Freq. levels: Frequency detection levels
Timers: Automatic timer settings
Setup parameters must always be verified/modified in accordance to the application.

$>$ The first menu to access is the Setup menu

Programming

1 SETUP
 > Parameter Display

For example, the setup menu integrates 10 parameters The table explains parameters' definition, settings described in the table hereunder. possibilities, and default values.

Down pushbutton to access parameter required.

Press
or
Up pushbutton to come back to previous value

Programming

1 SETUP

> Parameter modification
Display the required parameter for modification.
Apply the same procedure described hereunder for network voltage modification, to all other parameters. Possible settings are described in the next table.
Example: We want to modify network voltage from 400 V to 230 V .

> To return to Setup menu press home pushbutton or press down to continue.

Programming

Metering
Manual operation
Automatic operation
Test mode

Programming

The return to 0 function allows, after the loss of the main or the genset voltage, the changeover switch opening after a delay from I to 0 or from II to 0 . So for example, this solution gives the possibility to open the switch after short-circuit. It also allows you to restart the genset after a shutdown without the load connected.

The 2nd trip parameter is associated with the return to 0 function as it requires some energy from an internal energy storage device.
So to achieve a 2nd opening on loss of voltage, you need to wait for the energy storage device to be re-charged.

Programming

2 VOLT. LEVELS

To reach voltage menu from Setup menu press once

> Parameter Display

The voltage menu integrates 8 parameters described in the table hereunder.
The table explains parameters' definition, settings possibilities, and default values.
Over and Under voltage conditions are verified on Mains and Generator side to allow operation as per the flow chart. Mains sensing and Generator sensing is 3 phases.

$>$ Parameter modification

Display the required parameter for modification.
Apply the same procedure as described in Setup Menu for network voltage modification. Possible settings are described in the previous table.

Over and under voltage detection levels + hysteresis are defined as percentage of nominal voltage.
Hysteresis levels allow under and over voltage conditions reset (voltage needs to pass hysteresis level to reset).

Note:

These values only need to be changed if a value is required other than the default.

Definition		Setting range	Default value
OV U:	Mains Over voltage detection	$102-120 \%$	115%
OV U HYS:	Mains Over voltage hysteresis detection	$101-119 \%$	110%
UND.U:	Mains Under voltage detection	$60-98 \%$	85%
UND.U HYS:	Mains under voltage hysteresis detection	$61-99 \%$	95%
OV U:	Generator over voltage detection $102-120 \%$ OV U HYS: Generator over voltage hysteresis detection UND.U: Generator under voltage detection UND.U HYS: Generator under voltage hysteresis detection	$60-98 \%$	85%

Programming

Metering
Manual operation
Automatic operation
Test mode

Programming

3 FREQ. LEVELS

To reach frequency menu from voltage menu press once

> Parameter Display

The frequency menu integrates 8 parameters described in the table hereunder.
The table explains parameters' definition, settings possibilities, and default values.
Over and Under frequency conditions are verified on Mains and Generator side to allow operation following operational flow chart.

> Parameter modification

Display the required parameter for modification.
Apply the same procedure as described in Setup Menu for network voltage modification. Possible settings are described in the previous table.

Over and under frequency detection levels + hysterisis are defined as percentage of nominal frequency.
Hysteresis levels allow under and over frequency conditions reset (frequency needs to pass hysteresis level to reset).

Note:
These values only need to be changed if a value is required other than the default.

Definition		Setting range	Default value
OV F:	Mains Over frequency detection	$101-120 \%$	105%
OV F HYS:	Mains Over frequency hysteresis	$100.5-119.5 \%$	103%
UND.F:	Mains Under frequency	$60-99 \%$	95%
UND.F HYS:	Mains under frequency hystere- sis	$60.5-99.5 \%$	97%
OV F:	Generator over frequency	$101-120 \%$	105%
OV F HYS:	Generator over frequency hysteresis	$100.5-119.5 \%$	103%
UND.F:	Generator under frequency	$60.5-99.5 \%$	95%
UND.F HYS:	Generator under frequency hysteresis	$60-99 \%$	97%

Programming

4 TIMERS

To reach timer menu from frequency menu press once

> Parameter Display

The timers menu integrates 9 parameters described in the table below.
The table explains parameters' definition, settings possibilities, and default values.
Timer precision: setting value: $+0 /+500 \mathrm{~ms}$
> Parameter modification
Display the required parameter for modification.
Apply the same procedure as described in the Setup Menu for network voltage modification. Possible settings are described in the previous table.

Timers operation is described in operational flow chart page 23.

Note:

These values only need to be changed if a value is required other than the default.

Programming

4 TIMERS

Definition		Setting range	Default value
2MT:	Loss of mains validation timer. Once mains has disappeared, 2 MT is started. If Mains comes back before 2MT ends, the comutation cycle is not started. (Delay on Gen start.)	0 to 60 sec .	5 sec .
AT:	Generator voltage and frequency stabilisation timer. Generator needs to be stable during AT to allow transfer from Mains.	0 to 60 sec .	5 sec.
1MT:	Mains Return validation timer. Once main is back 1MT is started. If Mains disappears before 1 MT ends, the load is not switched back to the Mains.	0 to 1800 sec .	120 sec.
DBT:	Dead Band timer. This timer is counted down before transferring the load from the Mains source to the Generator or vice versa. It allows the load residual voltage to decrease under a non critical value before transfer (Necessary in case of rotating loads).	0 to 20 sec.	5 sec.
ROT:	Run on time timer. Once the load is switched back from the Generator to the Mains, ROT is started and the Generator will stop once ROT is finished (allows generator cool down).	0 to 600 sec.	240 sec.
FPMT:	Fail Protection Mains Timer. Delays transfer to 0 position action after mains' failure. Allows not to transfer to 0 in case of short circuit.	0 to 10 sec.	2 sec.
FPGT:	Fail Protection Generator Timer. Delays transfer to 0 position action after generator failure. Allows not to transfer to 0 in case of load impact or short circuit.	0 to 10 sec .	5 sec.

$>$ Information

In a situation of mains returns, if the genset shutsdown, the 1 MT timer is automatically set to 3 seconds to allow a quick return to the mains.

Metering

PRODUCT METERING

> General comments

Metering is active as soon as the unit is powered Commutation cycles have priority over Visualisation mode and display timers count down as soon as they are active.
Any value available in this mode can be kept on the screen once displayed. excepted during commutation cycle; comes back to timer count down after 5 s .

After commutation cycle, the display comes back to Mains voltage display (first variable of the mode).
Visualisation mode architecture is as described hereunder.

Metering

Manual operation
Automatic operation
Test mode

Metering

PRODUCT METERING

> Values definition

A All these values are not accessible on all networks

- 3P4L: Mains V1, V2, V3, U12, U23, U31

Gen V1, V2, V3, U12, U23, U31

- 1P3L: Mains U12, U23, U31 / Gen U12, U23, U31
- 1P2L: Mains U12 / Gen U12
- 3P3L: Mains U12, U23, U31 / Gen U12, U23, U31
- 2PAP: Mains V1, V2 / Gen V1
- 3PAP: Mains V1, V2, V3 / Gen V1

Mains and Generator sensing are 3 phases.

Loss of mains validation timer

Delay on transfer timer

MT $01205 E 0^{\circ}$	
	8 ©
ITT	0005 5E[${ }^{\circ}$
	8 -

Mains return validation timer

Dead band timer

Manual operation

To access Manual Mode operation open the front cover

MANUAL MODE

Once in manual mode (cover open) it is possible:

- to access programming and visualisation menus
- to padlock the switch
- to operate the switch with the handle
- to start the Gen using test off load pushbutton.

As soon as the manual mode is activated (cover open), all automatic actions are inhibited.
The same result is achieved, if the contact (Excepted the start order if mains failed) between the 207 and 208 terminals is closed : in this case, programming, visualisation, test off load are available.

New stable switch position when returning to automatic mode from manual mode:
The switch transfers to required control position according to flow charts the cover is closed or as soon as Power returns back.

Do not force the product (Max 10 Nm)

MANUAL OPERATION

Take the handle, attached on the front face under the cover, to manually operate the switch.
Verify the switch position on the front position label before any manual operation:

Do not leave the manual handle in automatic mode.

- from position I turn anti clockwise to reach position 0
- from position 0 turn anti clockwise to reach position II
- from position II turn clockwise to reach position 0
- from position 0 turn clockwise to reach position I

PADLOCKING

Padlock is only possible in manual operating mode (front cover opened).
Padlocking is configurable in position 0 only or in 3 positions (I-0-II).
Manually pull the padlock handle to allow the padlock to be inserted into the hole provided

Automatic operation

Ensure cover is fully closed and switch is in automatic mode. Close the front cover "Click" to access automatic operation.
The automatic mode must be activated as soon as source switching is required after loss of mains condition.

The unit integrates a power capacitor source to provide enough power during black out (loss of mains) to wait for generator starting and to eventually drive the switch to zero position if required. Further external protection will be required if "phasing" is a concern.

POSSIBLE ACTION

Once in automatic mode it is possible:

- to access programming and visualisation menus
- to start off load or on load testing
- to start a loss of Mains sequence
- to start a Mains return sequence

MANUAL-AUTOMATIC MODE/POWER RETURN CONDITION

- 2 seconds the unit is switched from manual to automatic mode, the automatic cycle is started.
- Mains and generator voltage \& frequency are verified to define the new stable position of the switch.
- The same table is considered after a complete power off action (Power cap must be completely discharged = 3 minutes).

Read timers definition for 1MT or 2MT understanding.

NEW STABLE POSITION OF THE SWITCH

Original switch position	Status of supply	New position
Mains	Available, genset standby or running	Mains
Mains	Mains unavailable for 2MT time period, genset standby or running	Genset. If genset Standby, then start genset first and wait for AT TIMER before transfer
Genset	Genset on load, mains unavailable	Genset
Genset	Genset on load, mains available for 1MT time period	Mains
Zero	Mains available, genset standby	Count down 1MT (3 sec) before transfer to Mains
Zero	Mains available, genset running	Genset to count down 1MT before transfer to Mains
Zero	Mains unavailable, genset running	Genset
Zero	Mains unavailable, genset standby	No action (because no supply). When supply becomes available change to mains or genset

Automatic operation

LOSS OF MAINS SEQUENCE
This sequence is started as soon as the switch is in automatic mode and in position I.

Position I:

- mains is available
- switch is in position I (Mains)
- generator is on or off.
> Specific feature
Automatic control inhibit
It is possible to inhibit completly the automatic sequence using the CTI contact (closing the contact between terminals 207-208). This can be useful to inhibit the transfer in case of power outage due to load short circuit.

Automatic operation

LOSS OF MAINS SEQUENCE
> "RETURN TO 0 POSITION" variable set to NO

RETURN I	N
8	

Automatic operation

LOSS OF MAINS SEQUENCE
Loss of Main
Return to 0 position = Yes

Automatic operation

MAINS RETURN AUTOMATIC SEQUENCE

This sequence is started as soon as the unit is in automatic mode and in position II.

Position II:

- Mains is not available
- Switch is in position II (Generator)
- Generator is on
> Specific feature
Retransfer inhibit feature
- Once the mains is back, it might be preferable not to immediately transfer the load from the generator to the mains.
- If retransfer inhibit feature has been enabled in the programming mode, the RTI led is on.
- Once retransfer from the generator to the mains is ready, RTI feature blocks the retransfer and the RTI led is blinking.
- A manual press on the RTI pushbutton is necessary to start retransfer.

Automatic operation

MAINS RETURN AUTOMATIC SEQUENCE

> Sequence description

Automatic operation

GEN FAlLURE

Loss of Gen
Return to 0 position $=$ Yes
$\frac{\text { RETURN 日 }}{8}$ FPGT default value $=5 \mathrm{sec}$
Fault situation: $1 \mathrm{MT}=3 \mathrm{sec}$

Test mode

TEST MODE ACCESS

> Functionality

Test mode

OFF LOAD TESTING

This test is possible in automatic mode in position I when the mains is available or in manual mode. It can be considered as a generator manual start in manual mode.

> Description

- This mode allows generator testing without load transfer from the mains to the generator.
- The generator is started and stopped normally.
- This test is always possible exept during a loss of main sequence.

> Sequence

Press test pushbutton to make test off load led blink and press validation pushbutton to start.

Test off load sequence

ON LOAD TESTING

This test is only possible in automatic mode, it allows to start the genset even if the mains is unavailable before and during a critical period on the mains.

> Description

- This test simulates a loss of mains condition. Loss of mains sequence is started and main's return sequence automatically activated as soon as generator is available
- All timers are run following their setting. The DBT is running not only during the "main's return" sequence but during the "loss of main's" sequence too!
- The "retransfer inhibit" feature is always actived during test on load (from keypad)
Press "TEST" pushbutton to make test on load Led blinking, press "validation" pushbutton to enter the code and start the test cycle, following loss of main + main's return sequences.
After the test, the automatic mode is actived.

Remote activation via remote test

It is possible to remotely start the "test on load" closing the contact 207 and 209 on the control terminal.
The cycle is started as soon as the input is closed. The retransfer from generator to main is blocked, and only allowed once the input is de-activated.

Test mode

RETURN TO Ø FEATURE

> Energy storage device end of life

Return to zero feature unavailability.
Unavailability of this optional feature will be indicated on the front panel. Please Refer to the trouble shooting guide.
Return to zero position feature is realised thanks to a internal energy storage device.
In case of failure of this component, a pointer remains on to inform operator that return to zero feature ("2nd TRIP") is no longer operational.

CTI Transfer Panel

RANGE

	63 A	100 A	125 A	160 A
Terminal shroud (2 pieces)				
Lightning protection				
TP 54				

Symptom	Step	Result
04 The product doesn't transfer to the genset in case of mains failure or test on load.	01 AUT Led is on \& Fault synthesis Led is off \& Power supply Led is blinking.	> NEGATIVE - Go to symptom 01.
		> POSITIVE - Go to the next step.
	02 Genset is started.	> NEGATIVE - Check that the mains failure timer (2MT) is still not counting down. - Check the genset control panel is set to the auto position. - Then consult your local dealer.
		> POSITIVE - Go to the next step.
	03 Genset availability Led is on.	> NEGATIVE - Go to symptom 03.
		> POSITIVE - Consult your local dealer.
05 The product doesn't transfer to the mains in case of mains return or test on load end.	01 AUT Led is on \& Fault synthesis Led is off \& Power supply Led is blinking.	> NEGATIVE - Go to symptom 01.
		> POSITIVE - Go to the next step.
	02 Mains availability Led is on.	> NEGATIVE - Go to symptom 02.
		> POSITIVE - Go to the next step.
	03 Retransfer inhibit (RTI) function is off.	> NEGATIVE - Push the RTI push button: $0 ৫-\quad \square$
		> POSITIVE - Consult your local dealer.
06 Genset keeps on running after mains restores and switch retransfers to the mains position.	01 AUT Led is on \& Fault synthesis Led is off \& Power supply Led is blinking.	> NEGATIVE - Go to symptom 01.
		> POSITIVE - Go to the next step.
	02 The run on time timer (ROT) is still counting down (visible on the display).	> NEGATIVE - Check the genset control panel is set to the auto position. - Then consult your local dealer.
		> POSITIVE - Wait for the ROT end.
07 Switch manual operations are not possible.	01 The manual operation is possible	> NEGATIVE - Check the required rotation of the switch - Check that the sufficient torque has been applied. - Then consult your local dealer.
		> POSITIVE - Goal reached.
08 Switch padlocking operations are not possible.	01 Possible to pull the padlocking mechanism	> NEGATIVE - Check that the product is in the 0 position for standard configuration. - Then consult your local dealer.
		> POSITIVE - Goal reached.

